Relaxed Operator Fusion for In-Memory Databases: Making Compilation, Vectorization, and Prefetching Work Together At Last

文章提出一种ROF框架,可以将JIT,向量化以及预取综合起来:

在阅读这篇论文之前,我看在MonetDB/X100里面提到了是否可以将向量化的primitive operator融合成为compound operator, 来减少物化开销和避免内存瓶颈。我也做了实现,发现如果JIT+vec可以融合的话,的确比vec效率要高许多,并且随着处理chunk越大差距越大,此时内存成为瓶颈。这个代码和实现我放在文章最后。


整个ROF思路大概如下:

The primary goal of operator fusion is to minimize materializa- tion. We contend that strategic materialization can be advantageous as it can exploit inter-tuple parallelism inherent in query execu- tion. Tuple-at-a-time processing by its nature exposes no inter-tuple parallelism. Thus, to facilitate strategic materialization, one could relax the requirement that operators within a pipeline be fused to- gether. With this, the DBMS instead decomposes pipelines into stages. A stage is a partition of a pipeline in which all operators are fused together. Stages within a pipeline communicate solely through cache-resident vectors of tuple IDs. Tuples are processed sequentially through operators in any given stage one-at-a-time. If the tuple is valid in the stage, its ID is appended into the stage’s output vector. Processing remains within a stage while the stage’s output vector is not full. If and when this vector reaches capacity, processing shifts to the next stage in the pipeline, where the output vector of the previous stage serves as the input to the current. Since there is always exactly one active processing stage in ROF, we en- sure both input and output vectors (when sufficiently small) will remain in the CPU’s caches.

作者谈到ROF比传统vec的好处有:1. 每次处理的是full vector而不是input vector + selection. 如果是input vector + selection不用进行内存重整,但是似乎对于SIMD不太友好 2. 还有就是operator之间的融合。

ROF is a hybrid between pipelined tuple-at-a-time processing and vectorized processing. There are two key distinguishing character- istics between ROF and traditional vectorized processing; with the exception of the last stage iteration, ROF stages always deliver a full vector of input to the next stage in the pipeline, unlike vectorized processing that may deliver input vectors restricted by a selection vector. Secondly, ROF enables vectorization across multiple se- quential relational operators (i.e., a stage), whereas conventional vectorization operates on a single relational operator, and often times within relational operators (e.g., vectorized hash computation followed by a vectorized hash-table lookup).

下图是作者给出的ROF代码示例,可以看到buf就是缓存tuples然后交给下个stage. 可以看到stage boundary被插入在了scan节点上。后面提到了增加stage boundary的准则是:是是否有SIMD predicate以及是否有预取操作。(A DBMS’s optimizer has to make two decisions per query when generating code with the ROF model: (1) whether to enable SIMD predicate evaluation and (2) whether to enable prefetching.) 当然这个ROF模型可以比较灵活:如果每个pipeline只有一个stage的话,那么就是类似Hyper这样的方式;如果每个operator之间都增加stage boundary,每个stage都是一个Operator的话那么就是vectorized模型。所以难点应该也是如何判断以及在哪里增加stage boundary.

Our ROF technique is flexible enough to model both tuple-at-a- time processing and vectorized processing, and hence, subsumes both models. The former can be realized by creating exactly one stage per pipeline. Since a stage fuses all operators it contains and every pipeline has only one stage, pipeline loops contain no inter- mediate output vectors. Vectorized processing can be modeled by installing a stage boundary between pairs of operators in a pipeline.

Staging alone does not provide many benefits; however, it facili- ties two optimizations not possible otherwise: SIMD vectorization, and prefetching of non-cache-resident data.

relaxed-operator-fusion-for-in-memory-databases-0.png


SIMD vec上有两种实现方式,一种是产生full vector, 一种是input vector + selection. 作者认为full vector比较好。另外就是他们也没有实现compound operator, 可能这个实现难度比较高,而且对于在小范围的数组上,不会到达内存读写瓶颈(操作全部在Cache上). ROF实现是在所有可能的SIMD操作上都增加stage boundary. 然后生成full vector实现方式入下图,大概就是可以拿bitmask + tid数组进行permute产生新的tid数组。

This can be done using one of two methods. Both methods assume the result of a SIMD operator resides in a SIMD register. In the first method, the operator breaks out of SIMD code to iterate over the results in the individual SIMD lanes one- at-a-time [12, 42]. Each result is pipelined to the next operator in the stage. In the second method, rather than iterate over individual lanes, the operator delivers its results in a SIMD register to the next operator in the stage. Both methods are not ideal. Breaking out of SIMD code unnecessarily ties up the registers for the duration of the stage. Delivering the entire register risks under-utilization if not all input tuples pass the operator, resulting in unnecessary computation.

Given this, we greedily force a stage boundary on all SIMD operator outputs. The advantages of this are (1) SIMD operators always deliver a 100% full vector of only valid tuples, (2) it frees subsequent operators from performing validity checks, and (3) the DBMS can generate tight loops that are exclusively SIMD. We now describe how to implement a SIMD scan using these boundaries.

relaxed-operator-fusion-for-in-memory-databases-1.png

插入预取操作的判断标准是,如果接下来存在超过cache的大内存访问的时候,那么就需要插入预取操作,并且在这里产生一个stage boundary. 比如上图中在Probe这个地方,如果判断hashtable会比较大的话,那么就要在这增加prefetch操作。 关于预取有好几种方式比如GP, SPP, AMAC, 这个在后面会提到,GP是相对比较简单的方式,是将整个过程拆分成为多个步骤,每个步骤都进行准备数据,并将为下个操作进行预取。 https://zhuanlan.zhihu.com/p/443829741

Our ROF model avoids all of these problems. The DBMS installs a stage boundary at the input to any operator that requires random access to data structures that are larger than the cache. This ensures that prefetch-enabled operators receive a full vector of input tuples, enabling it to overlap computation and memory accesses since these tuples can be processed independently.

Although we can employ any software prefetching technique with ROF, we decided to use GP for multiple reasons. Foremost is that generating GP code is simpler than with SPP and AMAC. GP also naturally provides synchronization boundaries between code stages for a group to resolve potential data races when inserting duplicate key-value pairs. Additionally, it was shown in [14] that SPP offered minimal performance improvement in comparison to GP while having a more complex code structure. Finally, using an open-addressing hash-table with linear probing means that all tuples have exactly one random access into the hash-table during probes and insertions (with the exception of duplicate-handling which requires two). Since all tuples in a group have the same number of random accesses even in the presence of skew, AMAC does not improve performance over GP.

文章在"Query Planning"这节重新说明了一下什么时候加入stage boundary以及codegen是怎么搞的。看上去好像SIMD predicate只有在Scan节点上增加了,对于其他节点的filter看上去好像并没有单独拆分出来。而对于prefetch可以通过query stats来估计是否要产生GP(group prefetching)的代码,如果考虑不准确的话,那么可以生成两套代码在运行时判断,然后在output增加一个stage boundary避免代码分支太多。

A DBMS’s optimizer has to make two decisions per query when generating code with the ROF model: (1) whether to enable SIMD predicate evaluation and (2) whether to enable prefetching.

During optimization, Peloton’s planner takes a greedy approach and installs a boundary after every scan operator if the scan has a SIMD-able predicate. Determining whether a given predicate can be implemented using SIMD instructions is a straightforward process that uses data-type and operation information already encoded in the expression tree. As we will show in Sect. 5, using SIMD when evaluating predicates during a scan never degrades performance.

The planner can also employ prefetching optimizations using two methods. In the first method, the query planner relies on database- and query-level statistics to estimate the sizes of all intermediate materialized data structures required by the query. For operators that require random access to data structures whose size exceeds the cache size, the planner will install a stage boundary at the operator’s input to facilitate prefetching. This heuristic can backfire if the collected statistics are inaccurate (see Sect. 5.3) and result in a minor performance degradation. An alternative approach is for the query planner to always install a stage boundary at the input to any operator that performs random memory accesses, but generate two code paths: one path that does prefetching and one that does not. The query compiler generates statistics collection code to track the size of intermediate data structures, and then uses this information to guide the program through either code path at runtime. In this way, the decision to prefetch is independent of query planning. We note that this approach will result in a code explosion as each branch requires a duplication of the remaining query logic; this process can repeat for each prefetching operator. ROF remedies this by installing a stage boundary at the operator’s output, thereby duplicating only the operator’s logic rather than the entire query plan.


我写代码对比了一下使用codegen, simd fusion, 以及simd composition的三种实现方式性能差距:https://github.com/dirtysalt/codes/blob/master/cc/xx-test/bench_codegen_simd.cpp

-------------------------------------------------------------------------
Benchmark                               Time             CPU   Iterations
-------------------------------------------------------------------------
codegen/4096                         1510 ns         1527 ns       460435
codegen/40960                       10851 ns        10867 ns        64535
codegen/409600                     258978 ns       258981 ns         2716
simd_fusion/4096                     1628 ns         1650 ns       423615
simd_fusion/40960                   11238 ns        11236 ns        62196
simd_fusion/409600                 264385 ns       264391 ns         2641
simd_compose/4096                    6195 ns         6217 ns       111544
simd_compose/40960                  71041 ns        71198 ns         9767
simd_compose/409600               3274913 ns      3274626 ns          213
simd_compose_noalloc/4096            3640 ns         3642 ns       191441
simd_compose_noalloc/40960          45630 ns        45691 ns        15411
simd_compose_noalloc/409600       1230650 ns      1230558 ns          570
simd_compose_noalloc_av/4096         3767 ns         3768 ns       186128
simd_compose_noalloc_av/40960       45186 ns        45242 ns        15479
simd_compose_noalloc_av/409600    1158468 ns      1158346 ns          603

可以看到,尺寸越大内存带宽可能会受限,以及内存分配速度也会产生限制:

#include <benchmark/benchmark.h>
#include <immintrin.h>

#include <random>

std::vector<int32_t> ConstructRandomSet(int64_t size, int32_t seed) {
    std::vector<int32_t> a;
    a.reserve(size);
    std::mt19937_64 rng;
    rng.seed(seed);
    for (size_t i = 0; i < size; ++i) {
        a.emplace_back(i);
    }
    return a;
}

void f_codegen(int32_t* a, int32_t* b, int32_t* c, int32_t* d, int n) {
    for (int i = 0; i < n; i++) {
        d[i] = 3 * a[i] + 4 * b[i] + 5 * c[i];
    }
}

void f_simd_fusion(int32_t* a, int32_t* b, int32_t* c, int32_t* d, int n) {
    __m512i c0 = _mm512_set1_epi32(3);
    __m512i c1 = _mm512_set1_epi32(4);
    __m512i c2 = _mm512_set1_epi32(5);

    int i = 0;
    for (i = 0; (i + 16) < n; i += 16) {
        __m512i x = _mm512_loadu_epi32(a + i);
        __m512i y = _mm512_loadu_epi32(b + i);
        __m512i z = _mm512_loadu_epi32(c + i);
        x = _mm512_mul_epi32(x, c0);
        y = _mm512_mul_epi32(y, c1);
        x = _mm512_add_epi32(x, y);
        z = _mm512_mul_epi32(z, c2);
        x = _mm512_add_epi32(x, z);
        _mm512_storeu_epi32(d + i, x);
    }

    while (i < n) {
        d[i] = 3 * a[i] + 4 * b[i] + 5 * c[i];
        i += 1;
    }
}

#define RE __restrict__

void f_add(int32_t* RE a, int32_t* RE b, int32_t* RE c, int n) {
    int i = 0;
    for (i = 0; (i + 16) < n; i += 16) {
        __m512i x = _mm512_loadu_epi32(a + i);
        __m512i y = _mm512_loadu_epi32(b + i);
        x = _mm512_add_epi32(x, y);
        _mm512_storeu_epi32(c + i, x);
    }

    while (i < n) {
        c[i] = a[i] + b[i];
        i += 1;
    }
}

void f_mul(int32_t* RE a, int32_t b, int32_t* RE c, int n) {
    int i = 0;
    __m512i c0 = _mm512_set1_epi32(b);
    for (i = 0; (i + 16) < n; i += 16) {
        __m512i x = _mm512_loadu_epi32(a + i);
        x = _mm512_mul_epi32(x, c0);
        _mm512_storeu_epi32(c + i, x);
    }

    while (i < n) {
        c[i] = a[i] * b;
        i += 1;
    }
}

void f_add_autovec(int32_t* RE a, int32_t* RE b, int32_t* RE c, int n) {
    for (int i = 0; i < n; i++) {
        c[i] = a[i] + b[i];
    }
}

void f_mul_autovec(int32_t* RE a, int32_t b, int32_t* RE c, int n) {
    for (int i = 0; i < n; i++) {
        c[i] = a[i] * b;
    }
}

void f_simd_compose(int32_t* a, int32_t* b, int32_t* c, int32_t* d, int n) {
    std::vector<int32_t> t0(n), t1(n), t2(n), t3(n), t4(n);
    f_mul(a, 3, t0.data(), n);
    f_mul(b, 4, t1.data(), n);
    f_mul(c, 5, t2.data(), n);
    f_add(t0.data(), t1.data(), t3.data(), n);
    f_add(t2.data(), t3.data(), d, n);
}

static void codegen(benchmark::State& state) {
    size_t n = state.range(0);
    auto a = ConstructRandomSet(n, 10);
    auto b = ConstructRandomSet(n, 20);
    auto c = ConstructRandomSet(n, 30);
    std::vector<int32_t> d(n);

    // Code inside this loop is measured repeatedly
    for (auto _ : state) {
        state.PauseTiming();
        d.assign(n, 0);
        state.ResumeTiming();
        f_codegen(a.data(), b.data(), c.data(), d.data(), n);
    }
}

static void simd_fusion(benchmark::State& state) {
    size_t n = state.range(0);
    auto a = ConstructRandomSet(n, 10);
    auto b = ConstructRandomSet(n, 20);
    auto c = ConstructRandomSet(n, 30);
    std::vector<int32_t> d(n);

    // Code inside this loop is measured repeatedly
    for (auto _ : state) {
        state.PauseTiming();
        d.assign(n, 0);
        state.ResumeTiming();
        f_simd_fusion(a.data(), b.data(), c.data(), d.data(), n);
    }
}

static void simd_compose(benchmark::State& state) {
    size_t n = state.range(0);
    auto a = ConstructRandomSet(n, 10);
    auto b = ConstructRandomSet(n, 20);
    auto c = ConstructRandomSet(n, 30);
    std::vector<int32_t> d(n);

    // Code inside this loop is measured repeatedly
    for (auto _ : state) {
        state.PauseTiming();
        d.assign(n, 0);
        state.ResumeTiming();
        f_simd_compose(a.data(), b.data(), c.data(), d.data(), n);
    }
}

static void simd_compose_noalloc(benchmark::State& state) {
    size_t n = state.range(0);
    auto a = ConstructRandomSet(n, 10);
    auto b = ConstructRandomSet(n, 20);
    auto c = ConstructRandomSet(n, 30);
    std::vector<int32_t> d(n);

    // Code inside this loop is measured repeatedly
    for (auto _ : state) {
        state.PauseTiming();
        d.assign(n, 0);
        std::vector<int32_t> t0(n), t1(n), t2(n), t3(n), t4(n);
        state.ResumeTiming();
        f_mul(a.data(), 3, t0.data(), n);
        f_mul(b.data(), 4, t1.data(), n);
        f_mul(c.data(), 5, t2.data(), n);
        f_add(t0.data(), t1.data(), t3.data(), n);
        f_add(t2.data(), t3.data(), d.data(), n);
    }
}

static void simd_compose_noalloc_av(benchmark::State& state) {
    size_t n = state.range(0);
    auto a = ConstructRandomSet(n, 10);
    auto b = ConstructRandomSet(n, 20);
    auto c = ConstructRandomSet(n, 30);
    std::vector<int32_t> d(n);

    // Code inside this loop is measured repeatedly
    for (auto _ : state) {
        state.PauseTiming();
        d.assign(n, 0);
        std::vector<int32_t> t0(n), t1(n), t2(n), t3(n), t4(n);
        state.ResumeTiming();
        f_mul_autovec(a.data(), 3, t0.data(), n);
        f_mul_autovec(b.data(), 4, t1.data(), n);
        f_mul_autovec(c.data(), 5, t2.data(), n);
        f_add_autovec(t0.data(), t1.data(), t3.data(), n);
        f_add_autovec(t2.data(), t3.data(), d.data(), n);
    }
}

// Register the function as a benchmark
static const int N0 = 4096;
static const int N1 = 40960;
static const int N2 = 409600;

BENCHMARK(codegen)->Arg(N0)->Arg(N1)->Arg(N2);
BENCHMARK(simd_fusion)->Arg(N0)->Arg(N1)->Arg(N2);
BENCHMARK(simd_compose)->Arg(N0)->Arg(N1)->Arg(N2);
BENCHMARK(simd_compose_noalloc)->Arg(N0)->Arg(N1)->Arg(N2);
BENCHMARK(simd_compose_noalloc_av)->Arg(N0)->Arg(N1)->Arg(N2);