推荐系统的可能实现

推荐系统大致分为两个部分:召回(recall)和排序(sort). 其中召回是获取推荐项目的候选集合,而排序则是对这些候选集合进行排序。

对于召回的实现,可以考虑将已经推荐给用户的集合,或者是曝光次数已经很高又或者用户明显不敢兴趣的集合,在这个阶段就过滤掉。这样每次推荐出来的结果就不会出现大概率重复了。

召回的实现可以有好几种模型/实现,以新闻推荐为例:

排序的实现之前和wenjie有过一些粗略的讨论,比如说对新闻A,B 的features向量,外加user features, 通过LR模型计算出0, 1. 0表示A在B之前,1表示A在B之后,这样来确定顺序。 由于自己对这一块也不是特别熟悉,所以如果上面的实现方法不对,又或者在工程实现上并不是最优的,还希望同学多多指正。